Hyperspectral Image Classification Based on Semi-Supervised Rotation Forest
نویسندگان
چکیده
Ensemble learning is widely used to combine varieties of weak learners in order to generate a relatively stronger learner by reducing either the bias or the variance of the individual learners. Rotation forest (RoF), combining feature extraction and classifier ensembles, has been successfully applied to hyperspectral (HS) image classification by promoting the diversity of base classifiers since last decade. Generally, RoF uses principal component analysis (PCA) as the rotation tool, which is commonly acknowledged as an unsupervised feature extraction method, and does not consider the discriminative information about classes. Sometimes, however, it turns out to be sub-optimal for classification tasks. Therefore, in this paper, we propose an improved RoF algorithm, in which semi-supervised local discriminant analysis is used as the feature rotation tool. The proposed algorithm, named semi-supervised rotation forest (SSRoF), aims to take advantage of both the discriminative information and local structural information provided by the limited labeled and massive unlabeled samples, thus providing better class separability for subsequent classifications. In order to promote the diversity of features, we also adjust the semi-supervised local discriminant analysis into a weighted form, which can balance the contributions of labeled and unlabeled samples. Experiments on several hyperspectral images demonstrate the effectiveness of our proposed algorithm compared with several state-of-the-art ensemble learning approaches.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملA novel semi-supervised learning framework for hyperspectral image classification
In this paper, we propose a novel semi-supervised learning classification framework using box-based smooth ordering and Multiple 1D-embedding-based interpolation method in Ref. 25 for hyperspectral images. Due to the lack of labeled samples, conventional supervised approaches cannot generally perform efficient enough. On the other hand, obtaining labeled samples for hyperspectral image classifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017